poliastro.core.propagation

Low level propagation algorithms

Submodules

Package Contents

Functions

farnocchia

farnocchia_coe(k, p, ecc, inc, raan, argp, nu, tof)

func_twobody(t0, u_, k)

Differential equation for the initial value two body problem.

vallado(k, r0, v0, tof, numiter)

Solves Kepler's Equation by applying a Newton-Raphson method.

mikkola_coe(k, p, ecc, inc, raan, argp, nu, tof)

mikkola(k, r0, v0, tof, rtol=None)

Raw algorithm for Mikkola's Kepler solver.

markley_coe(k, p, ecc, inc, raan, argp, nu, tof)

markley(k, r0, v0, tof)

Solves the kepler problem by a non-iterative method. Relative error is

pimienta_coe(k, p, ecc, inc, raan, argp, nu, tof)

pimienta(k, r0, v0, tof)

Raw algorithm for Adonis' Pimienta and John L. Crassidis 15th order

gooding_coe(k, p, ecc, inc, raan, argp, nu, tof, numiter=150, rtol=1e-08)

gooding(k, r0, v0, tof, numiter=150, rtol=1e-08)

Solves the Elliptic Kepler Equation with a cubic convergence and

danby_coe(k, p, ecc, inc, raan, argp, nu, tof, numiter=20, rtol=1e-08)

danby(k, r0, v0, tof, numiter=20, rtol=1e-08)

Kepler solver for both elliptic and parabolic orbits based on Danby's

poliastro.core.propagation.func_twobody(t0, u_, k)

Differential equation for the initial value two body problem.

This function follows Cowell’s formulation.

Parameters
  • t0 (float) – Time.

  • u (array) – Six component state vector [x, y, z, vx, vy, vz] (km, km/s).

  • k (float) – Standard gravitational parameter.

poliastro.core.propagation.vallado(k, r0, v0, tof, numiter)

Solves Kepler’s Equation by applying a Newton-Raphson method.

If the position of a body along its orbit wants to be computed for a specific time, it can be solved by terms of the Kepler’s Equation:

\[E = M + e\sin{E}\]

In this case, the equation is written in terms of the Universal Anomaly:

\[\sqrt{\mu}\Delta t = \frac{r_{o}v_{o}}{\sqrt{\mu}}\chi^{2}C(\alpha \chi^{2}) + (1 - \alpha r_{o})\chi^{3}S(\alpha \chi^{2}) + r_{0}\chi\]

This equation is solved for the universal anomaly by applying a Newton-Raphson numerical method. Once it is solved, the Lagrange coefficients are returned:

\[\begin{split}\begin{align} f &= 1 \frac{\chi^{2}}{r_{o}}C(\alpha \chi^{2}) \\ g &= \Delta t - \frac{1}{\sqrt{\mu}}\chi^{3}S(\alpha \chi^{2}) \\ \dot{f} &= \frac{\sqrt{\mu}}{rr_{o}}(\alpha \chi^{3}S(\alpha \chi^{2}) - \chi) \\ \dot{g} &= 1 - \frac{\chi^{2}}{r}C(\alpha \chi^{2}) \\ \end{align}\end{split}\]

Lagrange coefficients can be related then with the position and velocity vectors:

\[\begin{split}\begin{align} \vec{r} &= f\vec{r_{o}} + g\vec{v_{o}} \\ \vec{v} &= \dot{f}\vec{r_{o}} + \dot{g}\vec{v_{o}} \\ \end{align}\end{split}\]
Parameters
  • k (float) – Standard gravitational parameter.

  • r0 (array) – Initial position vector.

  • v0 (array) – Initial velocity vector.

  • tof (float) – Time of flight.

  • numiter (int) – Number of iterations.

Returns

  • f (float) – First Lagrange coefficient

  • g (float) – Second Lagrange coefficient

  • fdot (float) – Derivative of the first coefficient

  • gdot (float) – Derivative of the second coefficient

Note

The theoretical procedure is explained in section 3.7 of Curtis in really deep detail. For analytical example, check in the same book for example 3.6.

poliastro.core.propagation.mikkola_coe(k, p, ecc, inc, raan, argp, nu, tof)
poliastro.core.propagation.mikkola(k, r0, v0, tof, rtol=None)

Raw algorithm for Mikkola’s Kepler solver.

Parameters
  • k (float) – Standard gravitational parameter of the attractor.

  • r (array) – Position vector.

  • v (array) – Velocity vector.

  • tof (float) – Time of flight.

  • rtol (float) – This method does not require tolerance since it is non-iterative.

Returns

  • rr (~np.array) – Final velocity vector.

  • vv (~np.array) – Final velocity vector.

Note

Original paper: https://doi.org/10.1007/BF01235850

poliastro.core.propagation.markley_coe(k, p, ecc, inc, raan, argp, nu, tof)
poliastro.core.propagation.markley(k, r0, v0, tof)

Solves the kepler problem by a non-iterative method. Relative error is around 1e-18, only limited by machine double-precision errors.

Parameters
  • k (float) – Standar Gravitational parameter.

  • r0 (array) – Initial position vector wrt attractor center.

  • v0 (array) – Initial velocity vector.

  • tof (float) – Time of flight.

Returns

  • rr (~np.array) – Final position vector.

  • vv (~np.array) – Final velocity vector.

Note

The following algorithm was taken from http://dx.doi.org/10.1007/BF00691917.

poliastro.core.propagation.pimienta_coe(k, p, ecc, inc, raan, argp, nu, tof)
poliastro.core.propagation.pimienta(k, r0, v0, tof)

Raw algorithm for Adonis’ Pimienta and John L. Crassidis 15th order polynomial Kepler solver.

Parameters
  • k (float) – Standar Gravitational parameter.

  • r0 (array) – Initial position vector wrt attractor center.

  • v0 (array) – Initial velocity vector.

  • tof (float) – Time of flight.

Returns

  • rr (~np.array) – Final position vector.

  • vv (~np.array) – Final velocity vector.

Note

This algorithm was derived from the original paper: Pimienta-Peñalver, A. & Crassidis, John. (2013). Accurate Kepler equation solver without transcendental function evaluations. Advances in the Astronautical Sciences. 147. 233-247.

poliastro.core.propagation.gooding_coe(k, p, ecc, inc, raan, argp, nu, tof, numiter=150, rtol=1e-08)
poliastro.core.propagation.gooding(k, r0, v0, tof, numiter=150, rtol=1e-08)

Solves the Elliptic Kepler Equation with a cubic convergence and accuracy better than 10e-12 rad is normally achieved. It is not valid for eccentricities equal or higher than 1.0.

Parameters
  • k (float) – Standard gravitational parameter of the attractor.

  • r0 (array) – Position vector.

  • v0 (array) – Velocity vector.

  • tof (float) – Time of flight.

  • numiter (int, optional) – Number of iterations, defaults to 150.

  • rtol (float, optional) – Relative error for accuracy of the method, defaults to 1e-8.

Returns

  • rr (~np.array) – Final position vector.

  • vv (~np.array) – Final velocity vector.

Note

Original paper for the algorithm: https://doi.org/10.1007/BF01238923

poliastro.core.propagation.danby_coe(k, p, ecc, inc, raan, argp, nu, tof, numiter=20, rtol=1e-08)
poliastro.core.propagation.danby(k, r0, v0, tof, numiter=20, rtol=1e-08)

Kepler solver for both elliptic and parabolic orbits based on Danby’s algorithm.

Parameters
  • k (float) – Standard gravitational parameter of the attractor.

  • r0 (array) – Position vector.

  • v0 (array) – Velocity vector.

  • tof (float) – Time of flight.

  • numiter (int, optional) – Number of iterations, defaults to 20.

  • rtol (float, optional) – Relative error for accuracy of the method, defaults to 1e-8.

Returns

  • rr (~np.array) – Final position vector.

  • vv (~np.array) – Final velocity vector.

Note

This algorithm was developed by Danby in his paper The solution of Kepler Equation with DOI: https://doi.org/10.1007/BF01686811